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Abstract-A model problem on the steady thermocapillary motion of a droplet suspended in a transparent 
liquid medium under radiation in the form of a ray, which by absorbing inside the droplet induces its non- 
uniform heating, is considered. Assuming low Reynolds and Peclet numbers, expressions for the force on 
the droplet, and the migration velocity of the droplet are derived. The principal results of the work are 
represented in equations (22) and (23). They are shown to be qualitatively different from that in the case 
examined in earlier works where radiation was suggested to be entirely absorbed on the droplet surface. 

The possibility of instability and multiplicity of steady regimes of the motion is pointed out. 

1. INTRODUCTION 

A VARIATION of interfacial tension along a droplet 
surface (also along any liquid-liquid interface of 
course) through stress balance at the surface can 
essentially influence the motion of fluids on either side 
of the surface. Investigation of such capillary effects 
has already found application, for example, in chemi- 
cal engineering, but it is especially important for en- 
larging our understanding of the processes occurring 
in the microgravity environment on board spacecraft 
when capillarity is often the only mechanism govern- 
ing the motion. Since interfacial tension usually 
depends on the temperature and concentration 
of admixtures, etc., capillary effects can be caused by 
the gradient in any one of these entities. 

Starting from Young et al. [l], quite a number of 
papers have been devoted to the steady thermo- 
capillary motion of a droplet in an unbounded 
liquid medium due to a constant temperature gradient 
applied at infinity (for example, see refs. [24], with a 
vast list of references contained in ref. [4]). But this is 
not the only means of inducing the thermocapillary 

motion of a droplet. Another possibility, subjecting a 
droplet to radiation, was pointed out in refs. [5, 61. 

Because of the absorption of radiation, a non-uniform 
temperature field can be created resulting in thermo- 
capillarity. 

In refs. [5, 61 a droplet was supposed to be a black 
or grey body, while the external liquid was absolutely 
transparent. In other words, radiation was suggested 
to be entirely absorbed on the surface of the droplet. 
The other case is considered in the present work, when 
a droplet slightly absorbs radiation in a volume and 
as a result there is some distribution of heat generation 
inside the droplet. As will be seen shortly, the results 
obtained here are qualitatively different from that of 
refs. [5, 61. 

2. FORMULATION 

Consider a droplet illuminated by a radiation beam 
and suspended in another liquid medium which is 
much more transparent than a droplet one. In this 
situation, due to radiation absorption, one pole of the 
droplet is hotter than the other. Thus, the thermo- 
capillary effect becomes apparent. In the absence of 
gravity, when thermocapillarity proves to be the only 
force, the effect entirely determines the motion, which 
is purely thermocapillary in this case. 

The aim of the present work is to evaluate the force 
on the droplet under radiation due to thermo- 
capillarity and, knowing it, to calculate the droplet 

velocity in a general case, including the presence of 
gravity. 

The assumptions and idealizations to deal ana- 
lytically with the problem, and thus, to describe the 
motion of the droplet are as follows. 

The liquids are viscous, unmixable, and incom- 
pressible. All their physical properties such as the 
dynamic viscosities pi, the densities pi, the thermal 
conductivities & and the thermal diffusivities x, are 
independent from temperature, except for the inter- 
facial tension c which is linear with temperature 7’ : 

u = o,, + (da/dT)(T- T,,), da/dT = const. 

co and To are some fixed values. Here and afterwards 
the subscripts i = 1,2 denote the external and internal 
fluids, respectively. The interfacial tension is large 
enough to preserve the spherical shape of the droplet. 

The simplest possible assumptions are made for 
optics of the process, claiming that : (1) radiation of 
the flux J is in the form of a uniform parallel ray, the 
droplet being entirely inside the ray; (2) there is 
neither reflection, nor refraction on the surface of the 
droplet; (3) the external liquid is transparent, while 
the internal one absorbs radiation according to 
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NOMENCLATURE 

A coefficient 

A, (n = 2,3, . .) coefficients, equations (12) 

and (13) 
B buoyancy force on the droplet 
E2 differential operator 
e unit vector in the radiation propagation 

direction 

F, F hydrodynamical force on the droplet and 
its dimensionless component in the 
radiation propagation direction 

g(r) functions, equations (17) and (18) 
gravity force on the droplet 

G,(p) (n = 2,3,. .) Gegenbauer polynomial 
of order n and degree - l/2 

J radiation flux 
K,, (n = 1,2,. . .) coefficients, equations (17) 

and (18) 
Ma modified Marangoni number 
m parameter combination defined in 

equation (20) 
111, (n = 1,2, . .) critical parameter 

combinations 
P,,(p) (n = 1,2, . .) Legendre polynomial of 

order n 

4 intensity of internal heat generation per 
unit volume 

Y radial coordinate measured from the 
droplet centre [dimensionless] 

T, dimensionless temperature field 

U droplet migration velocity 

u,, u, fluid velocity at infinity in a 

reference frame travelling with the 
droplet and its dimensionless 
component 
limit value of the droplet migration 
velocity when radiation flux tends to 
infinity 
components of a velocity field in the 

Y- and &directions 
axis passing through the droplet centre in 
the radiation propagation direction. 

Greek symbols 
c( radiation absorption coefficient of the 

droplet phase 

B ratio of the dynamic viscosities, ~JP, 
6 ratio of the thermal conductivities, 1,/I, 
& small parameter, aa 

;, 
ratio of the thermal diffusivities, x2/x, 
thermal conductivity 

P cos 0 

Pt dynamic viscosity 
u surface tension 

xr thermal diffusivity 

*I stream function [dimensionless]. 

Subscripts 
i 1, continuous phase ; 2, droplet phase 
XI evaluation at large distance from the 

droplet. 

Buger’s law; (4) a correlation aa << 1 holds, where a 
is the droplet radius and CI the absorption coefficient. 
The latter means that the absorption is weak, so it is 
possible to approximately replace Buger’s exponent 
by a linear function. Thus, the function q(r, Q) of heat 
generation intensity per unit volume inside the droplet 
can be written as 

q(r,O) = stJ[l-a(rcosf3+J(a2-r2sin28))] (1) 

where r is the radial coordinate measured from the 
droplet centre; f3 the polar angle measured from the 
positive direction of the z-axis which is chosen to 
pass through the droplet centre and to point in the 
direction the radiation propagates in. 

The solution is constructed at low Reynolds and 
Peclet numbers and only a zero approximation in 
Reynolds number, or creeping flow approximation, is 
employed. The velocity the droplet migrates at and 
the body force, if any, are supposed to be parallel to 
the direction the radiation propagates in (later on this 
requirement will be rejected). Thus, the problem can 
be treated as axisymmetrical, with the z-axis being 
the symmetrical one. The consideration is held in a 

reference frame travelling with the droplet centre, in 
terms of the stream function $, defined by 

1 a+, u,, = ~- - 
r2 sin 0 a8 ’ “’ 

1 a*i 
r sin 0 & 

where vi,, ~1,” are components of the velocity field in 
the r- and O-directions. 

As stated earlier, the main task is to derive the 

hydrodynamical force (usually known as a drag) on 
the droplet as a function of all the parameters 
involved, the migration velocity among them. Then, 
by setting up the net force on the droplet, which can 
be, for example, superposition of the hydrodynamical 
force and the mass force, if any, to equal zero, the 
migration velocity can be obtained. 

Let us proceed with mathematical formulation of 
the problem. First of all, dimensionless variables are 
to be introduced. A natural length scale is the droplet 
radius a. The temperature Tj is non-dimensionalized 
by subtracting its constant value at infinity and divid- 
ing by the scale aJa2/1,. The quantity (do/dT)a2Ja3/ 
(~~1,) is used to define the scaled velocity field. Finally, 
the equations and boundary conditions for the 
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dimensionless stream function and temperature fields 
can be written as 

I-$ a2 
E4t,bi=0, “2=$+rz- 

ag’ 

E-’ = E2(E2) (2) 

r-+co, *, -+ U,r2(1 -p2)/2; 

r-+0, $f2/r2 -c cc (3) 

p = f 1, $l = 0, E’i+b, = 0 (4) 

r = 1, $, = *2 = 0, a$,/& = a+,/& (5) 

K- ‘Ma * c a($,, T2) 
rz -= 

%r, ~1 

BT 
2 

+&‘[l--~(r~+,/(l-r~+r~~~))] (8) 

r+co, T, ‘0; r + 0, T, < cc (9) 

p-+ +l, (1 -p2)ar,japjo (10) 
r= 1, T, = T,, aT,jar = SaT,lar 

p$; + K=E; 

I XI 

do aJa’ 
Ma=-- 

dTp,l,x, 

i= 1,2; p=cOse; c=ua. (11) 

The modified Marangoni number Ma has been 
introduced here. Conventional symbols have been 
used for the differential operations. The quantity U, 

is the scaled velocity of the uniform flow at infinity. 
Equations (2) are the Stokes equations in terms of 

stream function, while equations (7) and (8) are the 
energy equations. The function on the right-hand side 
of equation (8) in the form (1) is attributed to the 
heat generation inside the droplet due to the radiation 
absorption. Conditions (3) and (9) determine the 
behaviour of the velocity and temperature fields at 
infinity and in the centre of the droplet. The absence 
of peculiarities at the symmetry axis is indicated in 
equations (4) and (IO). Boundary conditions (5) are 
responsible for the vanishing of the normal velocity 
and continuity of the tangential one at the droplet 
surface, while a continuity of the temperature and 
thermal flux in the same place is reflected in equation 
(11). The tangential stress balance concerning viscous 
and capillary stresses can be written as equation (6). 

The system (2)-(11) does not contain a normal 
stress balance condition since it can be replaced by a 
more convenient condition of a net force on the drop- 
let vanishing to zero, when a departure of the droplet 
shape from a spherical one is neglected. The unknown 

quantity U, is to be determined from this condition 

as stated earlier. 

3. SOLUTION 

The formal solution of the problem (2)-(4) may 
be written on the grounds of the general solution 
contained in the book by Happel and Brenner [7] as 
follows : 

+ 2 An(rmn+’ -r-““)G,(p) (12) 
n=2 

+ f A,(f+2 -~‘F,(/J). (13) 
“=2 

Here, G,(F) is the Gegenbauer polynomial of order n 
and degree - l/2. The unknown constants in equa- 
tions (12) and (13) are to be determined from equation 
(6) when solving the temperature problem. 

Knowing equation (12) the expression for the 
hydrodynamical force on the droplet, scaled by 
(da/dT)a2Ja4/1,, may be written as [7] 

F= -4nA,. (14) 

Note that the quantities U, and Fare components of 
the corresponding vectors in the z-axis direction and 
can be both positive and negative (the other com- 
ponents are zero). 

As assumed, the quantity E is small. This fact has 
been already used to represent the heat generation 
term on the right-hand side of equation (8). Now we 
shall develop an asymptotic expansion for the tem- 
perature field in the limit E -+ 0, the other dimen- 
sionless numbers being of order unity. In this limit, 

the number Mu * E here representing a Peclet number, 
is also small to agree with the suggestions involved. 

To find an asymptotic solution for the problem (6)- 
(13), the method of matched asymptotic expansions 
is to be employed. The procedure to be accomplished 
is well known and straightforward (e.g. see ref. [S]), 
only slight complication due to the unknown con- 
stants in the infinite series (equations (12) and (13)) 
to be found emerges here, so the mediate details are 
omitted, with the final result up to O(E) for the tem- 
perature field being represented as follows. 

In the outer region (r > O(E- ‘)) 

T, = fi”+~T(‘). 

In the inner region (1 < r < O(E- ‘)) 

T, = T,,+ET,,. 

Inside the droplet 

T2 = T,,+.zT,,. (15) 
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T’,O’=O, T’“=;’ r,,=; 1+&l-?) 
[ 1 

ET{‘) =kexp{iU,Muar[P-sign(U,Mu)]} (16) 

T,, = -_iIJU,Masign(O.,Ma) 

+:u,Mo(:(1+~) 

+ f 1 A,+ rP,(p)+ i: fr&)P&) n=ll 

Strictly, these constants are also to be expanded into 
a series in E and it is the order unity ground terms of 
these expansions that are meant in equations (17) 
and (18). The terms, in which the functions &(r) 
(n = 0, 1, . .) occur, are due to the non-homogeneous 
term on the right-hand side of equation (8) which is 
expanded into Legendre polynomials when solving 
the problem. Expressions for these functions are not 
supplied (nevertheless, it is obvious that the odd num- 
ber functions beginning with the third one equal zero). 
The thing is that, as can be seen from equation (14) 
only one mode contributes to the force, and thus, to 
the migration velocity of the droplet which is the 
main object of interest in this work. So one may 
consider only that mode. Still, absolutely ignoring 
the higher modes is not quite relevant, since such 
phenomena as peculiarity and instability of the solu- 
tion have been proved to occur in these modes. As 
will be seen further, from the viewpoint of these 
phenomena, the information represented in equations 
(17) and (18) is quite sufficient. 

T,, = -_aaMosign(C’,Ma) 

+&Ma & ;-3K-l 
1 [ 

18%‘+17 

280 r 1 
1 PI(P) 
‘( r”+4 

4n+lO 

Substituting equations (12), (13), (15)-( 17) into 
equation (6) taking into account the formula 
(1 - p’) dP,/dp = n(n + l)G,,+ , , and solving for the 

G,-mode, one can obtain 

- & 11 A,+ [P,(p) + f f&)PM (17) “=O 
Ma 

m= _9(2+6)’ 

K,, = -(l+n+n&)-’ 
L 

3+2n+6(2n+ 1) 

n+l 

1 

+4Km’ (2n+3)(2n+S) 1 
K2n = (l+n+n6)-’ [ 1 

~ 
n(n+ 1) 

Solving for the higher modes (n = 3,4, . . .) we need 
only one interesting detail, namely, the existence of 
such combinations of the parameters involved, at 
which the equations for determination of the con- 
stants A, reduce to 0 * A,, = 0 for even numbers n and 
to O* A, = const. # 0 for odd numbers. The com- 
binations can be presented as m = WI,, where 

+K_, n+4+S-‘(n+ 1) 

4n+lO --Ic 

_,n+2+6-‘(n+l) 

2n+3 1 
_fIlG9 = - 5c2&.2 

f2,(r) = (&r3-&r)dm' (18) 
{ 1, ifx > 0 

sign (x) = 
-1, ifx < 0. 

(2n-l)(n+nd-6)(1+B) 
m, = 

3(2+6) 

n(n - 1) 

KK’ (2n+1)(2n+3) 

1 -’ 
_- 

4 1 (21) 

We shall return to this fact in the next section. For 
m # m, we have a single finite solution for A, 

(n = 3,4,. . .). 

Here P,(p) is the Legendre polynomial of order 
n. Condition (6) has not yet been employed, so 
the unknown constants U,, A,, (n = 2,3,. .) remam. 

Substitution of equation (19) into equation (14) 
gives the dimensionless expression for the hydro- 
dynamical force. After returning to variables with 
dimensions, rewriting in a vector form, and intro- 
ducing the droplet migration velocity U(U = -U,), 
this exnression may be written as 

(20) 
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(2-3 

where e is the unit vector in the radiation propagation 
direction. 

Note that despite formula (22) being derived 
when the vectors U and e are collinear, it holds even 
when this condition is infringed. This is due to 
linearity of the hydrodynamical problem involved, 
so different factors may be considered separately, the 
results added together. 

With the help of equation (22) the droplet migration 
velocity can be easily obtained by setting the net force 
on the droplet equal to zero. With regard to the Earth’s 
gravity this condition reduces to F+G+B = 0. Here 
G is the gravity force and B the buoyancy force. As 
stated earlier, in the general case, it is not necessary 
for the vector e (and, consequently, the vector U) to 
be collinear to G and B. In particular, the expression 
for the migration velocity in a free fall environment 
(G = B = 0) is as follows : 

da a2Ja3 

’ = dT 15p,A,(2+6) 

fm (; - ;~-~)]‘e. (23) 

Formulae (22) and (23) represent the principal 
results of the present work. 

4. ANALYSIS 

As can be seen from equation (23), the dependence 
of the migration velocity of the droplet on the radi- 
ation flux is non-linear and so more complex than the 

linear one obtained in refs. [5, 61 (note that m - J). 
This dependence is shown qualitatively in Fig. 1 for 

(a) 

different relationships between the parameters. At 
IC- ’ = 35/4, degeneration takes place when the results 
obtained here are qualitatively similar to that of refs. 
[5, 61 from the viewpoint of U against J. The remark- 
able fact is for the migration velocity to approach the 
finite value (K- ’ # 35/4) : 

Uli, = -y(+‘)‘, (24) 

when the flux J tends to infinity. This was not quite 
evident beforehand. So one of the conclusions made 
on the grounds of the present work is that it is impor- 
tant, if the radiation is absorbed in the volume or on 

the surface of the droplet. Formula (24), where the 
minimum number of the parameters is involved, is a 
good replacement of equation (23) when 

1[3/4- (3/35)~- ‘]ml >> I1 + (3/2)81. (25) 

Some peculiarity is contained in equation (23). 

When m = m , , where 

m, = [1+(3/2)fi][(3/35)~-‘-3/4]-’ 

the migration velocity of the droplet takes an infinite 
value. Thus, the results obtained here are incorrect 
for the values of the parameters m in some vicinity of 
the value m, when applied to a real situation at finitely 
small Reynolds and Peclet numbers rather than at the 
asymptotic limit of these numbers. The same may be 
stated for the vicinities of the values m, from equation 

(21) for odd n = 3,5,. . here, but in general the non- 
model case, may be for all n = 3,4,. . . . 

Expression (22) contains one more peculiarity. At 

m = m2, where m2 = (1+/3)[(2/35)~~ ’ - l/4]- ‘, the 
denominator in equation (22) becomes zero. But this 
peculiarity does not become apparent if the numerator 
in equation (22) also equals zero, i.e. equation (23) 
holds. It is interesting that at m = m2 expression (23) 
determines the migration velocity not only in a free 
fall environment, but also under gravity, the velocity 
being independent from gravity (at least under the 
approximation involved). The peculiarity atm=m, 

I . 
; 

I 

’ J 

(b) 

FIG. 1. Qualitative dependence of the droplet migration velocity component in the radiation propagation 
direction on the radiation flux : (a) for do/dT < 0, 3/4- (3/35)K-’ > 0; (b) for da/dT < 0, 

3/4- (3/35)K- ’ < 0. 
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becomes apparent only at such statements of the prob- The instability suggests that the motion regime 
lem when the droplet velocity different from equation found in the present work is not single and there are 
(23) is given before the force needed to support this a number of ones which failed to be derived at the 
motion is sought. In the last case, when a real situation given approximation. At least, considering the next 
is concerned, the consideration is incorrect for the order approximations in low Reynolds and Peclet 
values of the parameter m in some vicinity of the value numbers in the vicinity of the critical values II?, 
m2. Closer to equation (23) is the droplet velocity, the (n = 1,2, .) for the parameter m, herewith changing 
shorter is the incorrect interval of m about the value the velocity scale, one can, firstly, eliminate from the 
m,. Note that the value m, can be obtained from peculiarities, and secondly, reveal steady regimes of 
equation (21) at n = 2. the flow. The example of such a consideration, but in 

When the value m is rather far from the critical the different situation, and only about the value m, , 
values m,, m, (odd n = 3,5,. .), Reynolds and Peclet is presented in ref. [9]. Since analogous analysis enjoys 
numbers for the droplet migration at the velocity only a small range of applicability and is to be rather 
(equation (23)) can be approximately superevaluated extensive, it has not been held here. 
by the velocity scale x1 CI given by equation (24). Here- By setting 
with, if the thermal diffusivities and kinematic vis- 

cosities are approximately of the same order, it is clear 
that the assumption of slight radiation absorption 
inside the droplet (E << 1) automatically results in 
a validity of the low Reynolds and Peclet numbers 

assumption for the motion regime found above. 
Is the migration of the droplet under the radiation 

stable? An attentive look at expression (22) from this 
standpoint induces some doubts. Indeed, the quantity 

a -+ 0, aJ = q (27) 

expression (22) reduces to the principal result of the 
work by the present authors [lo], where a droplet with 
uniform inside heat generation of the intensity q per 
unit volume was considered, no matter what that heat 
generation was induced by. The inducing factors can 
be a chemical reaction, radioactive decay or absorp- 
tion of radiation in the limit (27). 

The oualitative character of the results obtained 
here is mainly due to the large uniform component of 
heat generation inside the droplet in comparison with 

*[l+,+m(i-&Km’)]’ (26) 

the non-uniform one. Evidently, under uniform inside 
heat generation only, no interfacial tension gradient 
occurs on the surface until fluids inside and outside 
the droplet are at rest. Thus, thermocapillary effects 

(to distinguish, the letter A is used here without a due to such factors occur only once the motion has 
subscript) can be both positive and negative depend- been already induced by some mechanism, for 
ing on the parameter values. If it is positive, the fol- instance, by the droplet translation under gravity [l l] 
lowing simple qualitative consideration discloses the or, as in the present work, by thermocapillary tensions 
instability. A slight departure of the migration velocity due to non-symmetry in heat generation; in addition, 
of the droplet from the equilibrium value (equation the thermocapillary flow can occur autonomously, 
(23)) changes the force on the droplet (equation (22)) without any inducing circumstances [lo]. Note that 

to promote further growth of this departure. But it is the results (equations (22), (23)) can be obtained from 

necessary to keep in mind that this speculation is in no the rather general expressions for the capillary force 

way a rigorous proof and serves only as a qualitative on a droplet with uniform inside heat generation and 
indication to the instability. The quantity A changes for its migration velocity, contained in ref. [lo], but 

its sign when the parameter m passes through the the authors preferred to deduce everything from the 
critical values m,, m2. The detailed investigation of very beginning here. Investigation of symmetrical fac- 

this question lies beyond the scope of this paper. To tors capable of creating capillary effects in the process 
add, instability can occur not only in the G,-mode of motion was started in ref. [12], when a droplet with 
connected with the droplet migration, but also in the chemical reaction on the surface was considered, and 

higher modes. The authors believe that while the par- then continued in refs. [9, 13, 141 also for surface 

ameter m passes through the values m, (n = 3,4, .) chemical reaction, and in ref. [l l] for uniform inside 
from equation (21), the G,-mode changes its state of heat generation, the autonomous capillary motion 

stability-instability. Note that in the problem under being considered in refs. [9, 10, 131. 
consideration both peculiarities and instability are 
connected with the critical values m, (n = 1,2, .). 

For experienced readers the following remark is 
5. CONCLUDING REMARKS 

supplied. ‘The critical combinations m, (i = 1,2,. .) The investigation undertaken here deals with a 
can be also obtained from the neutral stability analy- model problem at low Reynolds and Peclet numbers. 
sis, confirming the belief that the instability discussed Nevertheless, it reveals some regularities such as a 

above really exists. Some complications in such analy- complex dependence of the migration velocity on the 
sis occur only in the G, mode because of two critical radiation flux, peculiarities, instability and multi- 
values available. But the details are omitted here. phcity of the regimes of the motion which all are 
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surely characteristic of the capillary effects with more 
complicated and realistic axisymmetrical (and not 

only axisymmetrical) distribution of heat generation 

6, 

inside the droplet, provided its uniform component 
(it is to be calculated expanding the function of heat 7. 
generation into a series of Legendre polynomials) is 
much larger than the non-uniform one as it takes place 8. 
in the present development. As for the cases in which 

the last condition is violated one can claim nothing 

for sure on the grounds of the above exploration. At 9. 
least, the analysis based on the ground approximation 
in low Reynolds and Peclet numbers held in refs. [5, 
61 allows the disclosure of no such regularities. 10. 

1. 

2. 

3. 

4. 
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MOUVEMENT THERMOCAPILLAIRE DUNE GOUTTE CHAUFFE PAR RADIATION 

R&sum&-On consider&s un probleme modele sur mouvement stationnaire thermocapillaire dune goutte 
dans un liquide transparent sous l’effect de radiation en forme d’un rayon qui engendre chauffe heterogene 
a l’interieur de la goutte par absorption du radiation. Suppose que nombres de Reynolds et Peclet sont 
petit, les expressions pour la force hydrodynamique sur la goutte et pour la velocite migratoire de la goutte 
sont deduit. Ces resultates principal du travail sont represent& a (22), (23). On montres que ils sont different 
qualitativement du tels en le cas examine en les travaux precedent oi il y a fait le supposition que radiation 
a ett absorb& entierement sur la surface de la goutte. La possibilite pour instabilite et pluralite du regimes 

stationnaire du mouvement est indique. 

THERMOKAPILLAREN BEWEGUNG VON TROPFEN DIE MITTELS DER STRALUNG 
GEWiiRMT WERDEN 

Zusammenfassung-Ein Modellproblem im Bereich der stationlren thermocapillaren Bewegung von 
Tropfen, die in einer transparenten Fliissigkeit gel&t sind und bestrahlt werden in der Art, das durch die 
Absorbtion der Strahlung ungleichformige Erwarmung im Tropfen induziert wird, wird betrachtet. Unter 
der Annahme winziger Reynoldszahlen und Peclet-zahl, Ausdrticke fur die auf den Tropfen, wirkenden 
krlfte sowie die Wanderungsgeschwindigkeit des Tropfens werd werden abgeleitet. Die Ergebnisse dieser 
Arbeit sind in (22) und (23) dargestellt. Diese Ergebnisse sind qualitativ unterscheidlich von denen 
friihers Arbeiten, bei denen die Strahlung vollstlndig von der Tropfen--Oberflache absorbiert wurde. Die 
Miiglichkeit fur Instabilitaten und Mehrzahlliisungen stationlrer Zustlnde der Bewegung wird evlautert. 

TEPMOKAFBUUIJIPHOE ABllXEHkiE KAIIJIkl, HArPEBAEMOn Pi3JIY9EHREM 

AaeoTai.nm--Mccnenyercn MonenbHan 3afla9a paeriohtepuoro repMoxanunnrprioro ~mimemia xamm B 
npo3paquoii mrw~oii cpene npa mutmra~ usnysemin 8 mine nyqa, tcoropbrii npu nornomemiri B rcanne 
nbtabmaer ee ueoruloponubrfi uarpea Bbtseneribt sbtpaaemin &nn cmtbr, neficrsyromefi Ha Kamno, II 
CKOPOCTH ee MHrpaqmi B npennomeHsa HH~KHX gacen Peiirionbnca H Herore. Ociiomibte pcsynbrarbr 
pa6OTbI IIpeACTaBJIeHbI ypaBHeHH,IMII (22) H (23). nOKa3aH0, ST0 OH&I Ka'IeCTBeHHO OTJIH'IIIOTCII OT 

non~eeabrx B npenbInynnix HCcnenoBaHmIx nnn cnyqan, Korna npennonararrocb, ST0 HsnyqemIe non- 
HO‘-TbIO IIOrJIOIIIaeTCK IIOBepXHoCTbEO KZUIJIES.OTMe'IeHa 803MOX(HOCTb HeyCTOfiWiBOCTIi I4 MHOXUZCTBeH- 

HOCTU pem~hioe panuohtepuoro nmimemin. 


